海面水温を変えた熱帯低気圧の温帯低気圧化の数値実験

勝部 弘太郎・稲津 將(北大院理)

1. はじめに

熱帯低気圧が極方向へ移動し中緯度の 傾圧帯に達すると,熱帯低気圧は徐々に 変質して温帯低気圧に変化することが知 られている。この現象を温帯低気圧化と 呼ぶ。熱帯低気圧は中緯度へ向かって進 むにつれて、 海面からの潜熱の供給が減 少し勢力が弱まるが,その後,温帯低気 圧に変化する過程で勢力が再強化するこ とがわかっている(Klein 1997)。また, Bond et al..(2010)は, 2004 年に北西太平 洋で発生した台風 Tokage の進路上の海 面水温の値を加工して数値実験を行った 結果,進路上の海面水温が低い場合に勢 力の強い温帯低気圧が生成されることを 示した。本研究では、2004年に北西太平 洋で発生した台風 Songda に関する領域 モデル実験によって、海面水温に対する 温帯低気圧化の鋭敏性を調べた。

数値実験の概要

数値実験には、気象庁・気象研究所で 開発された非静力学モデル(JMA/MRI Non Hydrostatic Model)の version 2009-Oct-19を用いた(Saito et al.,2006, Saito et al.,2007)。大気の初期・境界条件 にJRA-25/JCDAS(Onogi et al.,2004)を, 海面水温には OISST(Reynolds et al.,2002)を用いた。モデルの水平解像度 は10km,鉛直40層である。すべての実 験は2004年9月1日00UTCを初期値と し10日間の数値積分を実行した。計算領 域は北緯31度,東経135度を中心とした 東西388格子,南北333格子のランベル ト円錐図法による直交座標系である。

海面水温の鋭敏性を調べるため, OISSTの海面水温をそのまま用いた標準 実験のほか,領域全体の海面水温の値に 1.5 ℃を足した Warm-SST 実験と 1.5 ℃を 引いた Cold-SST 実験を行った。

3. 数値実験の結果

図1は3つの実験から得られた低気圧 の中心気圧の時間変化,図2は経路図で ある。熱帯低気圧として発達,減衰して いく段階では海面水温が高いほど中心気 圧が低く勢力が強いが,その後の温帯低 気圧化で再強化する過程では Cold-SST 実験で急激な中心気圧の降下が見られた。 低気圧の経路は,東シナ海で進行方向を 北西から北東へ変えるまでは3つの実験 でほぼ同じ経路をとったが,その後は海 面水温が低い場合ほど北西寄りの経路を とった。

図 3 は中心気圧が再強化し中心気圧が もっとも低くなった時刻における天気図 である。再強化後の低気圧の位置は海面 水温が低い実験ほど北西に位置している。 標準実験および, Cold-SST 実験では低気 圧の中心の進行方向右側で暖気移流,進 行方向左側で寒気移流となっている。一 方 Warm-SST 実験では,中心付近に暖気 塊が存在しており熱帯低気圧に近い構造 をしている。図 4 の断面図をみても標準 および, Cold-SST 実験ではトラフが上空 にいくにつれて西に傾いているが, Warm-SST 実験ではトラフの傾きはみら れない。

4. まとめ

海面水温の値を加工して温帯低気圧化 した事例の数値実験をおこなった結果, 海面水温が低い場合で急激な再強化が発 生した。Warm-SST実験で再強化後の低 気圧の構造は熱帯低気圧に近い構造をし ていた。これらは過去の研究とも整合的 である. 今後は低気圧の経路が実験間で 変わった理由を解明していく予定である。

謝辞:本研究は気候変動適応推進プログ ラムおよび科学研究費 22106008 と 22244057の支援を受けた。

引用文献:

Bond, N.A., and M. F. Cronin, and M. Garvert, 2010: Atmospheric Sensitivity to SST near the Kuroshio Extension during the Extratropical Transition of Typhoon Tokage. *Mon. Wea. Rev.*, 138, 2644–2663.

Inatsu, M., 2009: The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones. *Atmos. Sci. Lett.*, 10, 267–272.

Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji and R. Taira 2007: The JRA-25 Reanalysis. *J. Meteor. Soc. Japan*, 85, 369-432.

Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K.Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The operational JMA nonhydrostatic mesoscale model. *Mon. Wea. Rev.*,134, 1266–1298

Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271–304. Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. *J. Climate*, 15, 1609-1625

図 2:標準実験(緑), Cold-SST 実験(青), Warm-SST 実験(赤) での低気圧の経路図。 隣接閉領域トラッキング手法(Inatsu 2009)に よって低気圧の中心位置を 6 時間間隔で決定 した。

1000 120E 123E 126E 129E 132E 135E 138E 141E 144E 147E 150E

図 3:再強化後の天気図。(左上)Warm-SST 実験の2004年9月9日 01UTC,(左下)標準実験の8日05UTC, (右上), Cold-SST 実験の8日06UTCでの天気図で,海面気圧(等値線,4 hPa間隔),850 hPa 面の気温(カラー,単位は K)と風(ベクトル,単位は m/s)が示されている。

図 4:図 3 の黒線での断面図。(左 上)Warm-SST 実験,(左下)標準実 験,(右上)Cold-SST 実験で,南北風(カ ラー,単位は m/s)と気温(等値線,単位 は K)が示されている。また,南北風が 0 の地点をトラフの位置の目安として 緑色の破線で描いた。