冬季北海道の降雪粒子を対象とした気象モデルの検証と

降雪粒子の雲微物理特性

近藤 誠(北大理)・佐藤 陽祐・稲津 將・勝山 祐太・丹治 星河(北大院理)

1. はじめに

降雪粒子は雪崩の発生、視程、雲の放 射特性に影響を与える。降雪粒子を含む 気象モデルの雲微物理過程を検証するに は観測との比較が必要である。Molthan et al.(2016)や Iguchi et al.(2012)では氷 相のモデルでの雲微物理過程の表現は星 観測や船舶観測、地上観測との比較によ る検証が行われてきた。しかし、氷相の雲 物理過程は未だ検証が不十分なところが 多く、観測との比較を通した物理過程の 検証が続けられている。また、北海道の氷 相雲を対象とした検証は十分ではない。

本研究では冬季北海道で発生する氷相 雲を対象として、気象モデルの雲微物理 過程の検証を行う。検証のための観測デ ータは降雪粒子の落下速度・粒径・粒子数 の地上観測データ(勝山、稲津 2019, 雪氷 学会)を用いた。

図1:計算領域。旭川の解析は黄色の四 角で示した領域を対象として行った。

2. データと手法

数値実験に用いたモデルは SCALE(Sato et al. 2015, Nishizawa et al. 2015)である。初期値・境界値に MSM 解 析値を用い、計算ドメインは図1とした。 水平解像度は1km、鉛直57層(鉛直解像 度は20m~1920m下層ほど細かい)で、 乱流スキームは MYNN(Nakajima and Niino, 2006)、放射スキームは mstrnX(Sekiguchi and Nakajima, 2008) を用いた。雲微物理スキームは数濃度を 診断する 1-moment bulk (Tomita, 2008: T08)、熱帯の混相雲の再現性が高くなる ように氷相の物理過程を改良した 1moment bulk (Roh and Satoh, 2014 : RS14)、水物質の数濃度を予報する 2-moment bulk (Seiki and Nakajima, 2014 : SN14)の3つを用いた。実験は2018年2 月 12 日の 09 JST~翌 15 JST を対象と して行い、観測値は旭川での 13 日 06: 00~09:00 JST のデータを用いた。

3. 地上観測との比較結果

はじめに計算された雲場の再現性を確認するために、ひまわり8号の可視画像 との比較を行い、西高東低の冬型の気圧 配置による筋状雲が形成されていること を確認した。

次に、降雪粒子の再現性を確認するた めに地上観測と比較を行った。観測値は

数値実験で、雪として表現される特性曲 線付近に分布していた(図 2 : 上)。また落 下速度の粒子数重みづけした頻度をみる と約 1 m/s の粒子が多く観測された。一 方、数値実験の結果は T08(図 2(下: 点線)) では落下速度の速い粒子が高い頻度で存 在した。この速い粒子は霰である(図2上: 実線)。このことから雪の粒子が多く占め ていた観測値に比べ霰の粒子が過大にな っていたことがわかる。RS14(図2下:破 線)では氷相の物理過程を改良することで 霰の落下速度の過大評価は改善した。し かし、T08 でも見られた霰の粒子数の頻 度は過大評価のままであった。そして、 SN14(図 2 下:一点鎖線)では落下速度の 再現性が高かった。また、その粒子は雪(図 2 上:一点鎖線)の頻度が高く観測結果を よく再現していた。

4. まとめ

数値実験と観測の比較を通して、T08 では落下速度の速い霰の粒子を過大評価 していることが明らかになった。RS14 で は落下速度の過大評価を改善したが、霰 の頻度は過大評価のままであった。SN14 では数濃度を予報することで、表現でき る落下速度の幅が広がり観測値をよく再 現していた。

これらの結果は、熱帯の混相雲の再現 性が高い RS14 でも冬季の氷相雲に対し ては再現性が必ずしも高くないことを示 しており、氷相雲の再現性向上のために 検証が必要であることを示している。

5. 参考文献

[1]Locatelli and Hobbs (1974), DOI: 10.1029/JC079i015p02185

[2]Iguchi et al. (2012), DOI: 10.1029 /2012JD018101
[3]Molthan et al. (2016), DOI: 10.1175/MWR-D-15-0397.1

[4]Sato et al. (2015), DOI: 10.1186/s40645-015-0053-6
[5]Nishizawa et al. (2015) DOI:10.5194 /gmd-8-3393-2015

[6]Tomita (2008) DOI: 10.2151/jmsj.86A.121,

[7]Seiki and Nakajima (2014) DOI: 10.1175 /JAS-D-

図2:(上)観測された降雪粒子の粒径-落下 速度散布図。および(実線)T08とRS14で 仮定される霰、(破線)T08とRS14で仮定 される雪、(点線)SN14で仮定される霰、 (一点鎖線)SN14 で仮定される雪の粒径-落下速度の関係。(観測値は 1 mm 以上の 粒子のみを用いた)(下)落下速度毎の粒子 の頻度(実線:観測値、点線:T08、破線: RS14、一点鎖線:SN14) 12-0195.1 [8]Roh and Satoh (2014) DOI: 10.1175/JAS-D-13-0252.1.

[9]Sekiguchi and Nakajima (2008) DOI: 10.1016/j.jqsrt.2008.07.013

[9]Nakanishi and Niino (2006), DOI:10.1007/s10546-005-9030-8

[10]勝山, 稲津 (2019) 雪氷研究大会 (2019·山形)